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Why ATAC-seq for assay chromatin accessibility ?
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scATAC-seq Experimental Procedure

Linear Pool

Collect amplification Remove oill
(a——

> 000000000 006

o]
Barcoded * !
gel beads —D

Transposition of

' Single nuclei Barcoded accessible
nuclei in bulk GEMs DNA fragments

Satpathy et al, Nat Biotech 2019 STAT1LS



scATACseq library construction

Inside Individual GEMs
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construction via PCR. The
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used in Illumina® bridge
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10x Single-cell ATAC-seq library
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16 bp cell barcode
10bp (V2) vs 12bp (V3)

UMI

Question:
Why no UMI?



Different scATAC-seq Techniques

Droplet-based
(10X Genomics; BioRad)

Plate or array
(ICELLS, Fluidigm C1)

split-pool
(sciATAC-seq)

https://www.youtube.com/watch?v=WgaeZe7mKUc

Chen et al, Genome Biol 2019 STAT115



Different scATAC-seq Applications

* Develop technology for single cell
epigenetic profiling

SsCATAC-
seq

e Study gene regulation at single cell
resolution

SCATAC-
seq

— Epigenetics in the context of gene
expression

— Same tissue but different cells

— Same tissue and same cells



Zoom poll

What are the limitations for split-pool method?

1.1t will need a lot of cells to begin with
2.1t is labor intensive
3.Both above

STAT115/215
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Avoid batch and confounding effects: experimental design

Balanced study design

Luciano Martelotto

Completely confounded study design

The Problem of Confounding Biological Variation and Batch Effects
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Workflow of a typical” scRNA-seq analysis

-~ | %= v
cells d é%‘h&‘- iﬁr —
. ol R o ) :
=== q MIL _ | data correction ! Library size etc.

SCTransform in Seurat

- == quality control (e.g. batch) '

count matrices -
normalization

raw data
processing

visualizatio

€N o e
e —

Dimension Reduction:
feature

selection PCA
; - e 2 TSNE
§ 2 UMAP
gene dynamlcs &  marker ?i N i
-

metastable states .. identification ~ ’
trajectory T )
oot conn inference ‘ > o
I3 >
' clustering Q_) wn
< o~
n 3
compositional , - (D
analysis & cluster 0
g annotation 3
W/
. . logC
Credit to Peter Hickey differential expression

Luecken, M. D. & Theis, F. J. Current best practices irssingle-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, (2019).



https://www.embopress.org/lookup/doi/10.15252/msb.20188746

MAESTRO, an integrative analysis workflow based
on Snakemake for scRNA-seqg and scATAC-seqg
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https://github.com/liulab-dfci/MAESTRO

Read Alignment

Cell Ranger (10X Genomics) solution

RNA-seq: STAR
— STARsolo (Blibaum et al, F1000 2019): 10X faster than CellRanger

ATAC-seq: BWA
— Minimap?2 (Li, Bioinfo 2018): 15x faster than CellRanger

— Question: can you use Salmon or Kallisto (pseudo-alignment tools) for
ScATACseq?

Resolve cell barcode and correct barcode sequencing errors



Sample QC

* Peak calling: MACS2
* RSeQC for RNA-seq
* ChIP-seq QC for ATAC-seq

Chen et al, Genome Biol 2019
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Technology Development QC
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scATAC-seq Cell QC

* % reads in promoters / peaks (good) or mitochondria (bad),
often set empirically depending on experiments / platforms
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e scATAC-seq pseudo-bulk often has better FRIP after cell QC

https://divingintogeneticsandgenomics.rbind.io/post/calculate-scatacseq-tss-enrichment-score/

Satpathy et al, Nat Biotech 2019
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https://github.com/liulab-dfci/MAESTRO

What else could go wrong?

* Doublet (more than two cells in the same droplet)
e Different barcodes can be from a single droplet

a Barcode multiplets
0 beads 1 bead 2+ bead ollgos 2+ beads
[ Bead Bead 1

Q)

\__y \-_-V \___f“/ \ %

Y Y Y K
Cell dropout Single-cell data Fractionated data
Lareau et.al 2019 Nature Communications
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Zoom poll

 Which one is better for QC?
e 1. Fraction of reads in peaks
e 2. Fraction of reads in promoters

STAT115/215
BIO/BST282



Generate Count Matrix
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Technical considerations

Only look at reads on peaks in each cell. (peak based)

SnapATACseq uses bin-based method. (count reads in 5kb tiling
bin across the genome)

Generate peak by cell count matrix or bin by cell count matrix
Very sparse, no UM

Could also be binary matrix

TF-IDF transformation.

Downstream analysis starts here



TF-IDF transformation

matrices using a term frequency-inverse document frequency (“TF-IDF”)
transformation. To do this, we first weighted all the sites for individual cells by
the total number of sites accessible in that cell (“term frequency”). We then
multiplied these weighted values by log(1 + the inverse frequency of each site
across all cells), the “inverse document frequency.” We then used singular value
decomposition on the TF-IDF matrix to generate a lower dimensional
representation of the data by only retaining the 2nd through 10th dimensions
(because the first dimension tends to be highly correlated with read depth).
Darren et.al Cell 2018

TF.IDF.custom <- function(data, verbose = TRUE) {

if (class(x = data) == "data.frame") {
data <- as.matrix(x = data)
}
if (class(x = data) != "dgCMatrix") {
data <- as(object = data, Class = "dgCMatrix")
}
if (verbose) {
message( "Performing TF-IDF normalization")
}
npeaks <- Matrix::colSums(x = data)
tf <- t(x = t(x = data) / npeaks)
# log transformation
idf <- log(l+ ncol(x = data) / Matrix::rowSums(x = data))
norm.data <- Diagonal(n = length(x = idf), x = idf) %*% tf
norm.data[which(x = is.na(x = norm.data))] <- 0
return(norm.data)

mat<- TF.IDF.custom(mat)

https://divingintogeneticsandgenomics.rbind.io/post/clustering-scatacseq-data-the-tf-idf-way/
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Clustering

e Dimension reduction

- Latent semantic indexing (LSI): SVD
applied to term-document matrix,
i.e., peak-cell count matrix after TF-
IDF transformation.

* Cluster cells (reduced
dimension) using graph-based
method in Seurat v3 (Stuart et al,
Cell 2019). KNN graph +
community detection algorithm

* Can visualize using t-SNE / UMAP
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UMAP_2

10 -

scATAC umap with and without TF-IDF

No TF-IDF With TF-IDF

scATAC-seq UMAP on LSI
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Latent semantic indexing (LSI) = TF-IDF + SVD

STAT115



Peak Calling

Optional step
Assign cells to clusters

Call peaks on original reads
from cells in each cluster

UMAP_2

Sometimes can call some
(small percentage) new peaks
in minor clusters

Merge peaks from clusters and
regenerate count matrix

10 1
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15
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Differential Peak Calling

At each peak (row), calculate differential enrichment 13
between cluster X and NOT (cluster X)

Mann—Whitney U test / Wilcoxon rank-sum test on peak-
cell count matrix

To overcome ties (0, 1) in peak-cell count matrix, normalize
data in each cell (col), scale to 10K (reads / cell)

Presto (Korsunsky et al,
https://www.biorxiv.org/content/10.1101/653253v1):
implementation of Wilcoxon test 1000 times faster than in
Seurat.



https://www.biorxiv.org/content/10.1101/653253v1

Annotate Relevant TFs with Motifs

e ChromVar (Schep et al, Nat Meth 2017) to find (a few hundred)
TF motifs enriched in the peak count vector of each cell and

visualize the results on tSNE / UMAP
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Annotate Relevant TFs with ChlIP-seq

e CistromeDB Toolkit function (Zheng el al, NAR 2019)

e Uses Giggle (Layer et al, Nat Meth 2018) to find significant
overlap with all public ChIP-seq data
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Annotate Relevant TFs with ChlIP-seq

e CistromeDB Toolkit function (Zheng el al, NAR 2019)
* |nput (differential) ATAC-seq peaks (in bed file) in a cluster
e QOutput public TF ChlP-seq data with best overlap
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/oom Poll

What are the challenges with the scATACseq count matrix?

1. very sparse
2. no UMI

What could be the issues using the peaks called from all cells?

1. peaks in a rare cell type can be missed

2. the clustering will miss the rare population

STAT115/215
BIO/BST282



Annotate Cell Types

e Convert peak-by-cell count matrix (scATAC-seq) to gene-by-cell
expression matrix (similar to scRNA-seq)
— Promoter openness not a good proxy for gene expression
— Gene body read coverage, could smooth data with K-nearest neighbor cells

— Regulatory potential (MAESTRO, Wang et al https://github.com/liulab-
dfci/MAESTRO)

TF-peak
TF-peak

TF-peak

El et

I

gene;


https://github.com/liulab-dfci/MAESTRO

Integrate scATAC-seq with scRNA-seq

e Convert peak-by-cell count matrix (scATAC-seq) to gene-by-cell
expression matrix (similar to scRNA-seq) using regulatory potential

* Use CCA to combine gene by cell matrices from scATAC-seq and scRNA-
seq, treating these two matrices like two batches

* Transfer cell annotation from scRNA-seq cluster to scATAC-seq

Intergrated PBMC scRNA-seq and scATAC-seq Annotated PBMC scRNA-seq and scATAC-seq
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Annotate Cell Types

* Convert peak-by-cell count matrix (scATAC-seq) to gene-by-cell
expression matrix (similar to scRNA-seq) using regulatory potential

* Annotate cell type and find marker genes similarly to scRNA-seq

Pearson's correlation between RNA and ATAC
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Using multiome data to evaluate label transfer accuracy
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Visualize driver TFs for scRNA/ATAC-seaq

PBMC CD14 Mono scRNA-seq regulators
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http://lisa.cistrome.org/
http://cistrome.org/db/
http://dbtoolkit.cistrome.org/

summary

Read mapping, peak calling

Sample and cell QC, peak — cell matrix

Clustering and visualization

Differential peaks and TF annotation

Use ATAC-seq regulatory potential as proxy for gene expression
ntegrate scATAC-seq with scRNA-seq and annotate cells
dentify driver TFs

Both technologies and computational methods still fast evolving



DNA
methylation
* scBS-seq’
e snmC-seq'®
e sci-MET*

Other single-cell related areas under fast development
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http://lisa.cistrome.org/

LISA TF Driver Inference

Fxamine each TF ChlP-seq and motif (if without ChlP-seq)
n silico delete binding from selected H3K27ac / DNase profiles

Look at whether changes on regulatory potential are enriched
on the user input differential genes
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Predict Driver TFs
from Gene Set

e Based on (e.g. differential expression)
gene set, infer an epigenetic profile by
selecting and weighing relevant publicly
available H3K27ac ChIP-seq,
DNase/ATAC-seq profiles

* |dentify TF ChIP-seq or enriched TF
motifs in the epigenetic profiles most
relevant to the gene set

http://lisa.cistrome.org/ (Qin et al, Genome Biol 2020)
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Single cell RNA-seq experiments: sample processing

Goal = live single cell suspensions High level considerations

v Species

v Solid tissue (what organ?)

v' Liquid biopsy (e.g. blood)

ﬁm"' Disaggregation e v S;”n%}igﬁ'l'y‘;,?% v' Biopsy size/volume (e.g. cellularity)

(1) SAMPLE PROCESSING AND CELL ISOLATION

(i) Mechanical (ii) Enzymatic (iii) Filtering (iv) Selection 8 ‘/ Cel-l com pOS]tlon
g o | (FROSMACS) & v' Cellular heterogeneity
| - v iti
| @ ] al . Bl ECM composition
' &‘ g +g>(Q@® v" Post-mortem
; ﬁW ﬁ’ ' v' Naive or treated (e.g. pre/post chemo)
ﬂﬁ v’ Viability
1 ’\4 NN v’ Preservation and storage

v Rare cell population?

v All cells or a fraction of them?

v Total cells vs. aimed cells

v" Known protocols for tissue dissociation?
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Different barcodes can be from a single droplet
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Inference and effects of barcode multipletsin
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Abstract

A widespread assumption for single-cell analyses specifies that one cell’s nucleic acids are
predominantly captured by one oligonucleotide barcode. Here, we show that ~13-21% of cell
barcodes from the 10x Chromium scATAC-seq assay may have been derived from a droplet
with more than one oligonucleotide sequence, which we call “barcode multiplets”. We
demonstrate that barcode multiplets can be derived from at least two different sources.
First, we confirm that approximately 4% of droplets from the 10x platform may contain
multiple beads. Additionally, we find that approximately 5% of beads may contain
detectable levels of multiple oligonucleotide barcodes. We show that this artifact can

confound single-cell analyses, including the interpr E] on of clonal diversity and

proliferation of intra-tumor lymphocytes. Overall, our work provides a conceptual and
computational framework to identify and assess the impacts of barcode multiplets in single-
cell data.



Zoom poll

Massively parallel single-cell mitochondrial DNA genotyping and
chromatin profiling

https://www.nature.com/articles/s41587-020-0645-6

1. There is only one copy of mitochondrial DNA
2. There is no normal control
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